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1 Localization of Modules, Torsion, Rank, and Local Rings

1.1 Localization of modules

Let R be a commutative ring and S ⊆ R be multiplicatively closed. If M is an R-module,
we can define the localization S−1M , which is an S−1R-module.

Example 1.1. Let S be the set of nonzero non-zero divisors in R. Then S−1R = Q(R)
is called the total quotient ring of R. The module S−1M is a Q(R)-module. If R is an
integral domain, Q is a field, so S−1M is a vector space.

If M is and R-module and N is an S−1R-module,

HomS−1R(S−1M,N) ∼= HomR(M,N).

That is, localization is a left-adjoint to the forgetful functor.
Localization satisfies a universal property: For any φ : M → N , where N is an S−1R-

module,

M N

S−1M

φ

Φ

where Φ(m/s) = s−1φ(m).

Proposition 1.1. S−1M ∼= S−1R⊗RM as S−1R-modules.

Proof. Let S−1R ×M → S−1M send (r/s,m) 7→ (rm)/s. This is left S−1R-linear and
right R-linear, so we get a map S−1R ⊗ RM → S−1M of S−1R-modules. Conversely, we
have the R-module homomorphism M → S−1R⊗RM sending m 7→ 1⊗m. The universal
property gives a map S−1M → S−1R ⊗R M sending m/s 7→ s−1 ⊗m. Check that these
are inverse maps.
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1.2 Torsion and rank

Let Q = Q(R) be the total quotient ring of R.

Definition 1.1. If M is an R-module, then m ∈ M is torsion if there exists some r ∈ S
such that rm = 0.

Mtor = {m ∈M : m torsion} is an R-submodule of M .

Lemma 1.1. Mtor = ker(M → Q⊗RM).

Proof. m ∈Mtor iff m/1 = 0 in Q⊗RM , since this is isomorphic to S−1M .

Example 1.2. Let A = Z2⊕Z/2Z⊕Z/3Z. Then Z/2Z⊕Z/3Z = Ator is the torsion part.

Definition 1.2. We say M is torsion-free if Mtor = 0.

Definition 1.3. The annihilator of M (in R) is Ann(M) := {r ∈ R : rm = 0 ∀m ∈M}.

This is an ideal of R.

Lemma 1.2. If R is an integral domain and M is finitely generated over R, then Ann(M) 6=
0 if and only if M = Mtor.

Proof. ( =⇒ ): If Ann(M) 6= 0, then there exists some r 6= 0 in M such taht rm = 0 for
all m ∈M . So m ∈Mtor for all m ∈M .

( ⇐= ): Let m1, . . . ,mn ∈ M generated M as an R-module. Let e1, . . . , rn ∈ R \ {0}
be such that rimi = 0 for all i. THen r1 · · · rnm = 0 for all m ∈M . Since R is an integral
domain, r1 · · · rn 6= 0, so r1 · · · rn ∈ Ann(M).

Definition 1.4. The rank of an R-module over an integral domain R is rankR(M) =
dimQ(Q⊗RM), if this dimension is finite.

Proposition 1.2. rankR(M) is the maximal number of R-linearly independent elements
in M .

Proof. An element of Mtor is by itself linearly dependent. We may replace M by M/Mtor,
so we may suppose M is R-torsion free. Them M → Q ⊗R M is an injection. M has
≤ dimQ(Q⊗RM) = rankR(M) =: n linearly independent elements. If v1, . . . , vn ∈ Q⊗RM
is a basis over Q, then there exists some r ∈ R such that rv1, . . . , rvn ∈M , and the rvi are
R-linearly independent. So we have at least n R-linearly independent elements in M .
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1.3 Local rings

Definition 1.5. A commutative ring R is local if it has a unique maximal ideal m.

If R is local, R/m is a field, called the residue field of R.

Proposition 1.3. Let R be commutative, and let p ⊆ R be a prime ideal. Then Rp is a
local ring with maximal ideal pRp. The ideals of Rp are Rp and IRp with I ⊆ p.

Lemma 1.3. If R is local and m is maximal, then R \m = R×.

Proof. If a ∈ R \m, then (a) = R. So a ∈ R×. Conversely, if a /∈ R×, then (a) 6= R, so
(a) ⊆ m. So a ∈ m.

Lemma 1.4. If R is commutative an m ⊆ R is maximal, then R/m ∼= Rm/mRm.

Proof. Look at R/m → Rm/mRm given by r + m 7→ r/1 + mRm. These are both fields,
so this is an injection. If r ∈ R and u ∈ R \m, then there eixsts some r ∈ R \m such that
uv = 1 mod m. Then vr +m 7→ (vr)/1 +mRm = r/n+mRm. So this is onto.

Proposition 1.4. Let R be commutative and M be an R-module. The following are
equivalent.

1. M = 0

2. Mp = 0 for all prime ideals p ⊆ R

3. Mm = 0 for all maximal ideals m ⊆ R.

Proof. Each of these is a special case of the last, so we just need to show (3) =⇒ (1). Let
m ∈ M \ {0}. Let U = Ann(Rm) = {r ∈ M : rm = 0}. I is proper, so I ⊆ m for some
maximal ideal m.1 If r/u ∈ Rm is such that (r/u)m = 0 ∈Mm, then there exists s ∈ R\m
such that srm = 0. Then sr ∈ m, so r ∈ m as m is prime. So Ann(Rmm) ( Rm. Then
m/1 6= 0 in Rm.

Next time, we will prove the following important theorem.

Lemma 1.5 (Nakayama). If M is a finitely generated module over a local ring (R,m) such
that mM = M , then M = 0.

Remark 1.1. What does the condition mM = M mean? M/mM is an R/m-vector space.
This says that if M/mM = 0, then M = 0.

1This uses Zorn’s lemma.
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